Protected Vegetable Cultivation: Management Options and Economic Potential

CLARITA PAGADUAN AGANON
TEOTIMO MILLO AGANON
Protected Vegetable Cultivation: Management Options and Economic Potential
FOREWORD

In the Philippines, most of the vegetables produced by farmers come from open field cultivation. But, in the recent years, the issues on food safety and quality were brought to the fore, paving the way to alternative technology such as protected vegetable cultivation.

Protected vegetable cultivation, which has been practiced a long time ago in temperate countries, is an emerging technology in the Philippines. Vegetables are grown in a "protected" environment such as a greenhouse where environmental conditions are controlled.

Protected vegetable cultivation involves growing of vegetables by providing covering material that will protect the crop from either too much heat and rain or pest attack. The protected structure may vary from simple net house to sophisticated glass house as used in temperate countries. It also uses a growth medium which has no contaminating effect in soil or environment. Lastly, it promotes adoption of integrated pest management. As described in this book, protected vegetable cultivation uses any or a combination of these practices.

With protected vegetable cultivation, farmers can plan production cycles to overcome seasonality, water scarcity and severe infestation that are common in open field cultivation. In other words, farmers can grow high-value crops all-year round with better protection against unfavorable weather conditions, pests and diseases resulting in high quality produce.

Moreover, in the light of consumers becoming more educated and more demanding of organically-grown produce, protected vegetable cultivation provides unique opportunities in producing high quality vegetables using bio-fertilizers and botanical pesticides.

Protected vegetable cultivation is so different from open field production. It will take some time for farmers to acquire all the needed technical skills. Thus, this book, which is based on empirically tested and reliable information, attempts to respond to this concern. It will serve as an important resource material for the transfer of protected vegetable cultivation technology particularly in the country. It came at very fitting time when we are on the road of pushing modernization of the agriculture sector. For this, I commend the authors and endorse this book wholeheartedly.

NICOMEDES P. ELEAZAR
Director, DA-BAR
Vegetables are the second most important crop after rice in most Southeast Asian countries. In the Philippines alone, vegetable production area is estimated at about 60,000 ha with an annual production of 252,000 tons (BAS, 2005). Supplies during on-season is characterized by market glut but scarce and disappearing during off-season months.

Scarce and discontinuous supply is attributed to biotic and abiotic factors in open field which are frequently handled inadequately by growers. The most effective approach to handling the harsh effects of these factors is through protective cultivation which has been practiced long time ago in temperate countries.

In the Philippines, protected vegetable cultivation is not widely practiced. There are as many reasons for this occurrence, but one glaring reality is the lack of adequate knowledge or information about this technology. This prompted the authors to come up with this book on “Protected Vegetable Cultivation: Management Options and Economic Potential”, a book about investing and engaging in protected vegetable cultivation.

It presents some facts from previous researches and publications including the experiences of the authors on protected vegetable production particularly on the operation of structures and appropriate cultural practices that spare the crop from biotic and abiotic factors commonly causing crop failure. Information contained herein consist of reviews from works done and actual experiences under Philippine and Canada conditions while one of the authors was on sabbatical leave at Delta, British Columbia, Canada. Although, temperature-wise Canada is far cooler than the Philippines, the culture and management of crop particularly vegetables can be adapted under Philippine setting.

The book is divided into seven chapters. Chapter 1 discusses about the concepts and types of structures for protected vegetable cultivation. It also presents a brief historical account of how protected cultivation started in the Philippines including the government and non-government initiatives to promote the technology. The indispensable considerations when planning to start, or just starting to go into commercial-scale protected vegetable cultivation business are also presented in this chapter.

Chapter 2 focuses on the technical requirements in starting or operating a protected vegetable business. The technical considerations include the selection of crops and cultivars based
on certain criteria; the proper siting or location for the structure; the size and orientation of structure for maximum light management and specific purpose; steps in the preparation of the house for planting; environmental control; and substrate consideration.

In Chapter 3, the choices for organic substrates intended for organic vegetable cultivation are presented. Some guidelines in organic vegetable cultivation inside protective structures are also included to satisfy the intent of protected cultivation which is safety for crops as well as consumers. Several formulations and their composition are described for specific use such as for seeds, seedlings and transplant purposes. Ingredients that are allowed for organic substrate production or formulation are discussed for reference purposes. A review of some researches done using several growing media and substrates for cucumbers, peppers, and tomato also forms part of this chapter.

The succeeding chapters present the most common crops for protected cultivation in the humid tropics and temperate climate and the specific management practices such as cultivars, planting, irrigation, fertilizer management using fertigation system or manual watering and fertilizer application as well as pest management. The crops include lettuce, broccoli, cucumber, watermelon and tomato. Specific topic on fertilizer solution preparation particularly for fertigation systems using bulk or injector systems though not very common in small scale protected cultivation is also included. Pest diagnosis as a preventive measure against pest upsurge and potential failure of the enterprise is emphasized in the second to the last chapter of the book.

Economic gain is the final indicator of any business enterprise. Starting a protected vegetable business entails cost much higher than open field system of production basically because of intensive capitalization for structure construction and equipment. The last chapter therefore, provides invaluable data on the cost and return analysis of protected vegetable production to serve as guide in deciding what type of structure and covering materials to use. It also discusses some limitations of the different protective structures particularly in the humid tropics.

While the information presented in this book may be far from complete, the authors hope that this initiative could provide the essential information useful in promoting the protected vegetable business particularly in the Philippines. May this book serve as easy reference and guide to entrepreneurs, development workers and researchers as they venture into protected agriculture.

CLARITA P. AGANON, Ph.D.
TEOTIMO M. AGANON, Ph.D.
TO OUR VALUED READERS

In the recent past, the University has conducted several researches to verify and fine-tune the protected vegetable cultivation technology in the region and in other parts of the country. The technology essentially involves growing crops under protective structures to shield plants from adverse environmental conditions at different stages of growth, making it possible for a farmer to grow off-season vegetables year-round.

As an institution of higher learning engaged in R and D, it is our responsibility as well as accountability to the various stakeholders engaged in vegetables research and development and the industry sector to share results of our research endeavors. For want of ready resource material on protected vegetable production, the authors have decided to come up with this book aptly titled Protected Vegetable Cultivation: Management Options and Economic Potential which documents their research and work experiences as well as comprehensive readings on the subject.

The authors, researchers and editorial staff must be commended for their enormous task in coming up with this publication. However, their efforts will only become truly significant if the ideas contained in this book are used to boost off-season vegetable cultivation in the country.

RUBEN C. SEVILLEJA, Ph.D.
President, CLSU
ACKNOWLEDGEMENT

The authors would like to extend their most sincere appreciation to the following for without their support, this piece of work would not have been made possible:

To the Central Luzon State University officials for allowing the senior author to go on a one-year sabbatical leave purposely to write this book;

To the Bureau of Agricultural Research of the Department of Agriculture for generously providing funds for the publication of this book;

The editor and production staff for their invaluable assistance extended to the authors particularly the nitty-gritty works involved in the production of a publication like this one;

To our dear departed parents for all their sacrifices just so we can get through with our college education and for instilling in us the virtues of hardwork, perseverance and integrity which molded us into what we are today;

Our siblings, relatives and friends in the Philippines and Canada for moral support;

To Jane, Marolynd and Pete Corneliusour three precious gems and inspiration;

And to Almighty God for the gift of life and wisdom.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>PREFACE</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>TO OUR VALUED READERS</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td></td>
<td>vi</td>
</tr>
</tbody>
</table>

CHAPTER 1

Concept and Types of Structures for Protected Vegetable Cultivation

- Concept of Protected Cultivation: 1
- Protected Cultivation in the Philippines: 3
- Things to Consider When Starting a Protected Vegetable Business:
 - Profitability: 4
 - Ability of the Enterprise to Compete: 4
 - Availability of Resources: 4
 - Knowledge: 4
- Types of Protective Structures: 4
 - Plastic House: 5
 - Net House: 5
 - Glass House: 5
 - Rainshelter: 6
 - Net tunnel: 6
- Categories of Protective Structures:
 - Low rise: 8
 - High rise: 8

CHAPTER 2

Technical Requirements for Protected Cultivation

- Selection of Vegetable Crops for Protected Cultivation: 9
- Criteria in the Selection of Crops for Protected Cultivation: 9
- Siting of Protective Structures: 10
- Environmental Control: 11
- Substrates for Protected Cultivation and Their Characteristics: 12
- Substrates in Soilless Culture:
 - Rockwool: 13
 - Sawdust: 13
 - Coir: 13
 - Perlite: 13
- Soilless Culture Techniques:
 - Bag Culture: 14
Straw Bale Culture 15
Ground or Soil Culture 15
Cover Cropping in Ground Culture 16
Management and Control of Protected Structures 16
Environment 16
Orientation of Protected Structures 16
Size of Structures 17
Preparation of Protective Structures for Planting 17
Substrate Management 18

CHAPTER 3 19
Greenhouse Organic Vegetable Cultivation 19
Commercial Blends 19
Formulating Organic Substrates or Potting Mixes 20
Ingredients Allowed in Growing Media Fabrication 21
Soil 21
Sand 21
Compost 22
Coir 23
Composted pine bark 24
Newspaper 24
Rice straw 25
Kenaf 25
Suggested Media Recipes for Protected Vegetable Cultivation 25
Classic soil-based mix 25
Seedling mix for styrofoam seedling flats 25
Sowing mix 25
Prick-out mix for growing seedlings to transplant size 26
Special potting mix 26
Classic planting mix 26
Simple soil flat mix 26
Classic formula for horticultural potting mix 26
Sterile peat-lite mix 26
Recipe for soil blocks 27
Growing mix for packs 27
Growing mixes for pots and baskets 27
Vegetable transplant recipe 27
Bedding plant recipe 27
CARE Mix 27
Aeration in Potting Mixes 29
Reported Responses of Crops to Different Substrates with or without Additional Amendments 30
CHAPTER 4

Most Common Vegetables for Protected Cultivation and Management Options

Lettuce

Types of Lettuce 35
Recommended Varieties and Description 37
Soil/Medium Requirement 37
Planting 38
Care and Management 38
Harvesting and Sorting 38
Common Problems in Greenhouse Lettuce 39

Tomato

Cultural Management for Growing Tomatoes under Protective Structures 40
Selecting Varieties 40
Planting 41
Pruning and Training 41
Pollination and Improving Fruit Set 43
Temperature Monitoring and Management 44
Relative Humidity Management 45
Irrigation 45
pH Management 46
Fertility Management 47
Analyzing Leaf Tissue 49
Nutrients Needed by Plants and Their Deficiency Symptoms 49
Physiological Disorders of Tomato 53
Radial Cracking 53
Concentric Cracking 53
Splitting 53
Catfacing 54
Blotchy Ripening or “Gray Wall” 54
Green Shoulder 54
Blossom-End Rot (BER) 54
Puffiness 55
Sunscald 56

Cucumber

Cultivars 56
Seeding 57
Planting 57
Growing Media 57
Temperature Requirement 57
Training and Pruning 57
Fertilization 59
Disease Management 59
Insect Management 60
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>CHAPTER 5
Fertilizer and Nutrient Calculation
Calculating Nutrient in Fertilizer Solution
Solubility Limits of Fertilizers
Methods of Preparing Fertilizer Solution
Bulk Tanks
Injectors
Injector Calibration</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>CHAPTER 6
Pest Diagnosis in Protected Vegetable Cultivation
Diagnosing Insects and Mite Problems
Diagnostic Methods
Categories of Insect Pests
Leaf-eaters
Exoskeleton depositors
Honeydew producers
Droppings leavers
Leaf stipplers, raspers and spotters
Webbing producers
Plant tissue deformers
Resistance Management for Mites</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>CHAPTER 7
Economic Potential of Protected Vegetable Cultivation
Economic Factors of Protected Cultivation</td>
<td>81</td>
</tr>
</tbody>
</table>
Cost Items
Yield and Return from Different types of Protective Structures
Varying Types of Covering Material of a House Tunnel
Protected Cultivation in Atmosphere-Controlled Protective Structures: The Case of Israel-type Greenhouse

ACRONYMS

REFERENCES

LIST OF TABLES

Table 1. Estimates of protected vegetable area 2
Table 2. Suggested temperatures for some greenhouse vegetables 11
Table 3. A Selection of organic fertilizers for use in growing media 28
Table 4. General guidelines for the amount of nitrogen to be used 48
Table 5. Recommended level of nutrients in tomato leaf tissue 49
Table 6. Some of the most common watermelon cultivars for protected cultivation 61
Table 7. Suggested nitrogen and potassium fertigation schedule for watermelon grown in protective structures 62
Table 8. Fertilizer recommendation for broccoli 68
Table 9. Solubility limits of some commercial inorganic fertilizers 70
Table 10a. Sequence of insecticide application for mites at low level of infestation 80
Table 10b. Sequence of insecticide application for mites at high level of infestation 80
Table 11. Gross revenues, total cost and net returns from greenhouse 83
Table 12. Estimated cost of constructing different models of protective structures in the Philippines and Canada tomato production 214 sq m (Florida, 1999) 84
Table 13. Yield and income from protected broccoli cultivation (3 m tall tunnels), Philippines, October 2006 to February, 2007 86
Table 14. Yield and income from protected grafted tomato cultivation in 12 sites in the Philippines, August 2007 to March 2008 88
Table 15. Cost and return analysis of greenhouse (Israel-type) lettuce production per 100 sq m 89
Table 16. Cost and return of greenhouse (Israel-type) broccoli production per 100 sqm (CLS U, Nueva Ecija, Philippines) 91

Table 17. General income and expense statement on two types of protective structures in Benguet State University, La Trinidad, Benguet (January, 2008) 92

LIST OF FIGURES

Figure 1. A plastic house for growing different crops 5
Figure 2. A net house for growing seedlings 5
Figure 3. Tomato grown inside a glass house 6
Figure 4. Rainshelter for tomato 7
Figure 5. Net tunnel for salad greens and leafy vegetables 7
Figure 6a. An Israel-type high rise greenhouse made of clear polyethylene plastic and very fine nylon mesh 8
Figure 6b. A modified Israel-type greenhouse 8
Figure 7. Two broad categories of soilless culture 12
Figure 8. A coir bag where tomatoes are grown 13
Figure 9a. A commercial fertilizer production project of a local government unit in Angeles City, Pampanga 20
Figure 9b. A commercial fertilizer production project at the Central Luzon State University (CLSU) 21
Figure 10. Iceberg – an example of a crisphead type of lettuce 36
Figure 11. Romaine type of lettuce 36
Figure 12. Lettuce grown inside Israel-type greenhouse at CLSU 36

- Figure 13. A typical plant density of greenhouse-grown a) indeterminate tomato (Canada) and b) semi-determinate greenhouse tomato (Philippines). 42

Figure 14. Tomato plants pruned to a single stem and leaf pruned to the height of matured fruits. 43
Figure 15. A plastic clip to hold the plant in place and resist breakage due to heavy fruit load 44
Figure 16. Irrigation through fertigation system in a) ground and b) soilless culture system. 46
Figure 17. Greenhouse cucumber with newly developed fruits grown (inset) in low rise protective structure at CLSU 59
Figure 18. Ground-cultured watermelon at fruiting stage inside the greenhouse 63
Figure 19. Yellow traps in greenhouse-grown broccoli (var Top Green) 68
Figure 20. Sample of bulk tank 71
Figure 21. Yellow sticky traps used in lettuce production 77
Figure 22. Spider mites nymphs on tomato leaf surface 79